Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE

In Further Pure Mathematics FP1 (6667/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 6667_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as Al ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. I ntegration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Question Number	Scheme		Marks
3. (a)	$x=4 t, y=\frac{4}{t}, t \neq 0$		
	$t=\frac{1}{4} \Rightarrow P(1,16), \quad t=2 \Rightarrow Q(8,2)$	Coordinates for either P or Q are correctly stated. (Can be implied).	B1
	$m(P Q)=\frac{2-16}{8-1}\{=-2\}$	Finds the gradient of the chord $P Q$ with $\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { then uses in } y=-\frac{1}{m} x \text {. }$ Condone incorrect sign of gradient.	M1
	$m(l)=\frac{1}{2}$ So, $l: y=\frac{1}{2} x$ or $2 y=x$	$y=\frac{1}{2} x \text { or } 2 y=x$	A1 oe
(b)	$x y=16 \text { or } y=\frac{16}{x} \text { or } x=\frac{16}{y}$	Correct Cartesian equation. Accept $\frac{4}{y}=\frac{x}{4} \text { or } x y=4^{2}$	B1 oe ${ }^{\text {[3] }}$
	Way 1 Way 2 Way 3		[1]
(c)	$\begin{array}{c\|c\|c} \frac{1}{2} x=\frac{16}{x} & \frac{4}{t}=\frac{1}{2}(4 t) & 2 y=\frac{16}{y} \\ \left\{x^{2}=32\right\} & \left\{t^{2}=2\right\} & \left\{y^{2}=8\right\} \end{array}$	Attempts to substitute their l into either their Cartesian equation or parametric equations of H	M1
	$(4 \sqrt{2}, 2 \sqrt{2}),(-4 \sqrt{2},-2 \sqrt{2})$	At least one set of coordinates (simplified or un-simplified) or $x= \pm 4 \sqrt{2}, y= \pm 2 \sqrt{2}$	A1
		Both sets of simplified coordinates. Accept written in pairs as $\begin{aligned} & x=4 \sqrt{2}, y=2 \sqrt{2} \\ & x=-4 \sqrt{2}, y=-2 \sqrt{2} \end{aligned}$	A1
			[3] 7

(b)

Uses $f(4)=0$
Way 5
$16 a+4 b=-12$
$a=-($ sum of 3 roots $)=-\left(4+2 \mathrm{i}-3^{\prime \prime}-2 \mathrm{i}-3^{\prime \prime}\right)$
Adds up all 3 roots
$a=2, b=-11$ or $x^{3}+2 x^{2}-11 x-52$
At least one of $a=2$ or $b=-11$

(c)

Way 2

$$
\begin{aligned}
\operatorname{Area}(F X D) & =\frac{1}{2}\left|\begin{array}{cccc}
a & -\frac{1}{4} a & -a & a \\
0 & 0 & -\frac{3}{2} a & 0
\end{array}\right| \\
& =\frac{1}{2}\left|\left(0+\frac{3}{8} a^{2}+0\right)-\left(0+0-\frac{3}{2} a^{2}\right)\right|=\frac{15}{16} a^{2}
\end{aligned}
$$

A correct attempt to apply the shoelace method.

$$
\frac{15 a^{2}}{16} \text { or } 0.9375 a^{2}
$$

(c) Rectangle - triangle 1 - triangle 2

Way $3=2 a \cdot \frac{3 a}{2}-\frac{1}{2} \cdot \frac{3 a}{4} \cdot \frac{3 a}{2}-\frac{1}{2} \cdot 2 a \cdot \frac{3 a}{2}=3 a^{2}-\frac{9 a^{2}}{16}-\frac{3 a^{2}}{2}$

$$
\frac{15 a^{2}}{16} \text { or } 0.9375 a^{2}
$$

(c) Attempts sine rule using appropriate choice from

Way 4

$$
F X=\frac{5 a}{4}, F D=\frac{5 a}{2}, D X=\frac{3 \sqrt{5} a}{4}, \sin F=\frac{3}{5}, \sin X=\frac{2}{\sqrt{5}}
$$

$$
\text { Uses Area }=\frac{1}{2} a b \sin C
$$

$$
\frac{15 a^{2}}{16} \text { or } 0.9375 a^{2}
$$

	Question 7 Notes
(c) Way 1	Do not award M1 if area of wrong triangle found e.g. $\frac{1}{2} \cdot 2 a \cdot \frac{3 a}{2}=\frac{3 a^{2}}{2}$

(ii)
$f(1)=3^{1}+2^{4}=19\{$ which is divisible by 19$\}$.

Correct conclusion seen at the end. Condone true for n $=1$ stated earlier.

Shows $\mathrm{f}(1)=19$
$\{\therefore \mathrm{f}(n)$ is divisible by 19 when $n=1\}$
Assume that for $n=k$,
$\mathrm{f}(k)=3^{3 k-2}+2^{3 k+1}$ is divisible by 19 for $k \in \mathbb{Z}^{+}$.
$\mathrm{f}(k+1)=3^{3(k+1)-2}+2^{3(k+1)+1}$
Applies $\mathrm{f}(k+1)$ with at least 1 power
correct
$\mathrm{f}(k+1)=27\left(3^{3 k-2}\right)+8\left(2^{3 k+1}\right)$ $=8\left(3^{3 k-2}+2^{3 k+1}\right)+19\left(3^{3 k-2}\right) \quad$ Eithe
or $=27\left(3^{3 k-2}+2^{3 k+1}\right)-19\left(2^{3 k+1}\right)$
$\therefore \mathrm{f}(k+1)=8 \mathrm{f}(k)+19\left(3^{3 k-2}\right)$
or $\mathrm{f}(k+1)=27 \mathrm{f}(k)-19\left(2^{3 k+1}\right)$
$\left\{\therefore \mathrm{f}(k+1)=8 \mathrm{f}(k)+19\left(3^{3 k-2}\right)\right.$ is divisible by 19 as
both $8 \mathrm{f}(k)$ and $19\left(3^{3 k-2}\right)$ are both divisible by 19$\}$
If the result is true for $\boldsymbol{n}=\boldsymbol{k}$, then it is now true for $\boldsymbol{n}=\boldsymbol{k}+\boldsymbol{1}$. As the result
Correct conclusion
seen at the end.
Condone true for n $=1$ stated earlier.
$\mathrm{f}(n)=3^{3 n-2}+2^{3 n+1}$ is divisible by 19
$\mathrm{f}(1)=3^{1}+2^{4}=19\{$ which is divisible by 19$\}$.
Shows $f(1)=19$
Way 3
$\{\therefore \mathrm{f}(n)$ is divisible by 19 when $n=1\}$
Assume that for $n=k$,
$\mathrm{f}(k)=3^{3 k-2}+2^{3 k+1}$ is divisible by 19 for $k \in \mathbb{Z}^{+}$.
$\mathrm{f}(k+1)-\alpha \mathrm{f}(k)=3^{3(k+1)-2}+2^{3(k+1)+1}-\alpha\left(3^{3 k-2}+2^{3 k+1}\right) \quad$ Applies $\mathrm{f}(k+1)$ with at least 1
power correct
$\mathrm{f}(k+1)-\alpha \mathrm{f}(k)=(27-\alpha)\left(3^{3 k-2}\right)+(8-\alpha) 2^{3 k+1}$
$=(8-\alpha)\left(3^{3 k-2}+2^{3 k+1}\right)+19\left(3^{3 k-2}\right)$
$(8-\alpha)\left(3^{3 k-2}+2^{3 k+1}\right)$ or $(8-\alpha) \mathrm{f}(k) ; 19\left(3^{3 k-2}\right)$
or $=(27-\alpha)\left(3^{3 k-2}+2^{3 k+1}\right)-19\left(2^{3 k+1}\right) \quad$ NB choosing $\alpha=8$ makes first term disappear. $(27-\alpha)\left(3^{3 k-2}+2^{3 k+1}\right)$ or $(27-\alpha) \mathrm{f}(k) ;-19\left(2^{3 k+1}\right)$

NB choosing $\alpha=27$ makes first term disappear.
$\therefore \mathrm{f}(k+1)=8 \mathrm{f}(k)+19\left(3^{3 k-2}\right)$
Dependent on at least one of the previous accuracy marks being awarded.

Makes $\mathrm{f}(k+1)$ the subject.
or $\mathrm{f}(k+1)=27 \mathrm{f}(k)-19\left(2^{3 k+1}\right)$
$\left\{\therefore \mathrm{f}(k+1)=27 \mathrm{f}(k)-19\left(2^{3 k+1}\right)\right.$ is divisible by 19 as both $27 \mathrm{f}(k)$
and $19\left(2^{3 k+1}\right)$ are both divisible by 19$\}$
If the result is true for $\boldsymbol{n}=\boldsymbol{k}$, then it is now true for $\boldsymbol{n}=\boldsymbol{k}+\mathbf{1}$. As the result
Correct conclusion
seen at the end. has shown to be true for $\boldsymbol{n}=\mathbf{1}$, then the result is true for all $\boldsymbol{n}\left(\in \mathbb{Z}^{+}\right)$.

Question 9 Notes

 Accept use of $\mathrm{f}(k)=3^{3 k-2}+2^{3 k+1}=19 m$ o.e. and award method and accuracy as above.